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Abstract—This paper introduces a new video understanding
dataset which can be utilised for the related problems of event
recognition, localisation and description in video. Our dataset
consists of dense, well structured event annotations in untrimmed
video of tennis matches. We also include highly detailed commen-
tary style descriptions, which are heavily dependent on both the
occurrence as well as the sequence of particular events. We use
general deep learning techniques to acquire some initial baseline
results on our dataset, without the need for explicit domain-
specific assumptions.

I. INTRODUCTION

Video understanding includes several important problems
in computer vision research, such as the detection and recogni-
tion of events, and video description or captioning. Following
trends in image understanding, video understanding problems
have recently been advanced with the use of deep learning ap-
proaches which are inherently data driven. However, compared
to image based problems, progress has been slow, mostly due
to the difficultly in collecting, annotating and processing video
data.

As these deep approaches get more complex, the require-
ment for video data increases. Furthermore as the performance
of these approaches improve, researchers are beginning to
cover multiple facets of the video understanding problem
with unified or very similar frameworks. Motivated by this
research direction we introduce a tennis dataset which is able
to be utilised for event recognition, localisation and description
within videos (Figure 1).

Most current description methods describe videos by recog-
nising the objects that are present, presenting only a vague
summary of the action that is taking place. This has several
limitations. Firstly, for many types of video, such as sports
and surveillance, much of the salient information lies in the
fine-grained detail of the action that is depicted. Secondly, in
the case of sports and in many other domains too, it is much
more useful to describe a video with domain related context
and knowledge. Both of these characteristics are missing from
recent video description datasets. Our dataset contains 746
commentary style descriptions which are not only heavily
reliant on the particular actions and events that take place,
but also the order in which they take place.

In accordance with our detailed descriptions, our dataset
also contains over 4, 000 event annotations to frame-level pre-
cision. These events enable our dataset to be utilised for action

Fig. 1. Our dataset is annotated with temporally dense events based on tennis
actions, as well as contextually relevant event based descriptions.

/ event recognition and detection evaluations. Our annotations
are at multiple levels of conceptual and temporal abstraction,
from entire games to individual hits, making our dataset useful
for higher level event modelling. Also, compared to current
datasets for action / event recognition and detection our lowest
level events are not only short (3̃0 frames), but also dense, with
less than 5 frames separating most events. This requires online
models to be able to make decisions about their current event
state very quickly.

We utilise some recent general deep learning techniques
to form baselines for our dataset. Briefly, we employ Con-
volutional Neural Networks (CNN) for visual processing and
Recurrent Neural Networks (RNN) temporal and sequence
modelling. We show that these modern techniques achieve
impressive results on our dataset, but believe further improve-
ment should be possible by focusing more on small but highly
influential spatial and temporal regions within the video.

II. RELATED WORK

We review works related to action recognition and detec-
tion, as well as those related to video description. We also
review some current datasets related to these problems and
highlight the necessity of our dataset.

A. Action Recognition & Video Classification

The problem of action recognition is to classify a trimmed
video clip into one of a pre-determined set of classes. Although
this problem has a long research history, only very recently has
deep learning been applied to solve it. Early approaches in-
volved extracting video descriptors using hand-crafted features
[15], [22], [55]–[57]. Early datasets such as KTH [41], Weiz-
mann [13], Hollywood-2 [25], HMDB [16], [22] and UCF-101



[48] were focused on short clip classification, where a clip was
trimmed around a single action. The ACT dataset [59] follows
the same premise, however it introduces hierarchical super-
classes.

More recent methods have begun to utilise deep data
driven architectures. [17] introduce 3D CNNs by extending
2D convolutional operators into the time dimension, allowing
the network to capture motion information encoded in multiple
adjacent frames. [20] experiment with 3D CNNs and different
styles of temporal fusion. [51] introduce C3D, a much deeper
3D net than that of [17], [20]. Distinct from 3D CNNs, [10],
[45] introduce a two-stream approach where a raw frame CNN
and an optical flow CNN are trained separately and fused
together. [28] explore late-style pooling techniques, and also
an RNN for learning longer range temporal dependencies.

Along with rise of data driven deep learning approaches
and with the aid of online video services such as YouTube,
datasets have become much larger both in terms of number of
classes as well as number of samples. These large sets, Sports-
1M [20], YouTube-8M [1] and Kinectis [21] have focused
more on video classification, where actions may be relevant
to class decisions, but the classes aren’t explicitly actions.
Also, forming such large datasets is difficult and with some
annotations being automatic, annotations are noisier than is
usual for image datasets.

B. Action Detection & Localisation

The task of event (or action) recognition involves finding
and classifying an event in an untrimmed video clip which
can contain many different events. Initial approaches [19],
[27], [29], [43], [58] employed an exhaustive sliding window
approach to generate fixed clips, which were then treated as
trimmed clips. Similar to the earlier action recognition works
[19], [58], [29] utilise hand crafted and CNN features for
encoding a window. [27] average out probabilities across sub-
slips encoded with a 3D CNN and RNN over sub-clips across
a video. [43] take a more complex approach adopting 3D
CNNs in a three stage proposal, classification and localisation
framework. [9], [24], [47], [64] replace the exhaustive sliding
window step with RNNs which label every time step. Most use
regression to locate boundary proposals at individual points in
time.

Action detection datasets have events marked up in
untrimmed videos. ActivityNet [3], THUMOS [12], [18] and
MultiTHUMOS [63] use videos sourced from YouTube, AVA
[14] uses movie clips, while Charades [44] uses crowdsourced
actors. The aforementioned datasets contain actions across
visually different scenes, allowing classifiers to use factors
other than the explicit actions to make decisions. This contrasts
with fine-grained datasets, MPII Cooking [38] and Cooking 2
[39] which focus on cooking videos, Basketball [34] which
uses broadcast footage of basketball games, and MERL [47]
which uses a static overhead camera to record what people
shop for from a set of shelves. Our dataset is in the same vein
as these fine-grained sets, with different actions occurring in
the same scene with the same objects at different times.

C. Video Captioning & Description

The task of event description is to generate a sentence,
describing and summarising an event, or set of events. Com-

pared with the aforementioned problems, video captioning is a
relatively young problem. [54] combine a CNN with an RNN
to process framewise image data from a video and generate
a description. This was later extended [53], [60] by including
optical flow, multi-scale features, and a sequence-to-sequence
RNN model to capture temporal patterns more effectively. [62]
utilise a 3D CNN to capture short term temporal relations. [30]
jointly learn both 2D and 3D CNNs which are mean pooled
over time before an RNN is used for sentence generation.
Alternative video features such as dense trajectories, object
detectors, and scene CNNs have been used to help find key
concepts such as verbs, objects and scenes [65]. [42] use frame
and video level features, before using an RNN for sentence
generation, while [32] uses bi-directional RNNs.

With the exception of the Charades dataset which includes
multiple descriptions per clip, video description datasets have
been disjoint from action based datasets. Description datasets
TACoS [35] and TACoS M-L [36] use the video data from
MPII Cooking 2, however they aren’t brought together as
one dataset. The most widely used video description dataset,
MSVD [4], contains general videos from YouTube with multi-
ple descriptions per clip marked up by AMT workers. Recently,
MSR-VTT [61] also uses YouTube but is over 4 times the size
of MSVD. MPII-MD [37] and M-VAD [50] use movie clips
and use Descriptive Video Services (DVS) data for description
annotation. In comparison to our dataset, these datasets use
videos where descriptions are heavily based on scene contents
rather than action sequences.

III. THE TENNIS DATASET

Tennis data is ideal for the problems of action recognition,
detection, and description for a number of reasons. Firstly
this is one of the few datasets which can be considered fine-
grained, where different actions occur in the same scene at a
fine level of detail. Secondly, the actions are short and dense
in time, with event boundaries often occurring only a few
frames apart, meaning the model has a very small window
of opportunity to make a decision. Thirdly, most description
datasets focus on general scenes and therefore have very noun
driven descriptions which lack the detail we aim to recover.
Lastly, compared to many event occurrences in the real world,
the game of tennis has a very set structure and sequence
of events, giving our dataset potential to be used for higher
order logic models related to event sequence modelling and
prediction. We also believe this is the first dataset with these
properties to cover all three problems of event recognition,
detection and description.

A. Outline

Following the lead of [49], we form a tennis dataset
consisting of five singles matches from the 2012 London
Olympics. Obtained from YouTube (youtube.com) each video
is 1280 × 720 at 25 fps. Each match is marked up with
a number of sequences relating to particular tennis related
events, each event belongs to a particular event type and has
its own particular attributes. In our case we utilise six event
types shown in Table I.

The Serve and Hit types are the finest level classes
representing specific actions, with Point events containing



one or more Serve and Hit events, Game events contain-
ing multiple Point events, Set events containing multiple
Game events, and Match events containing multiple Set
events. This hierarchical structure of more refined actions
being subsets of higher level events is similar to the real world
where short-term actions are just parts of a longer-term event
or goal. Compared to the real world however, the structure
and sequence of events in a tennis match are much more
constrained and structured.

TABLE I. DATASET EVENT STATISTICS FOR DIFFERENT EVENT TYPES
AND ATTRIBUTES

Type Attributes Events Frames Frames/Event
Match Winner 5 786455 157291
Set Winner & Score 11 765738 69613
Game Winner & Score & Server 118 588759 4989
Point Winner & Score 746 159494 214
Serve Near|Far & In|Fault|Let 1017 68385 67

Near & In 345 22920 66
Near & Let 12 817 68

Near & Fault 128 8902 70
Far & In 382 25205 66
Far & Let 26 1777 68

Far & Fault 124 8764 71
Hit Near|Far & Left|Right 2551 73564 29

Near & Left 670 18083 27
Near & Right 625 17790 28

Far & Left 600 18587 31
Far & Right 656 19104 29

B. Splits

We manually split the dataset into training, validation, and
test sets (Table II). We split videos between Game events
to ensure all Hit, Serve, Point and Game events fall
exclusively into either the training, validation or testing splits.
We split in this fashion to allow the same training data used on
a frame, or lower hierarchical event type, basis to be used in a
higher event type, ie. frames within sub-events from a Point
in the training set will also fall in the training set for frames.

TABLE II. DATASET SPLIT STATISTICS

Event
train val test

# % # % # %
Game 85 72 8 7 25 21
Point 550 74 42 6 154 20
Serve 750 74 57 6 210 20
Hit 1868 74 140 5 543 21

Frames 571280 73 44463 6 171317 21

C. Action Classes & Set Balancing

To address the problems of action recognition and detection
we employ the following classes across temporal space: Hit
Near Right (HNR), Hit Near Left (HNL), Hit Far Right (HFR),
Hit Far Left (HFL), Serve Near (SN), Serve Far (SF), and
Other (O). These categories reflect the hit and serve event
types labelled in the dataset. Serves, no matter whether they
are faults, lets, or land in, are labelled as a serve event. The
“Other” (O) label is used when the frame or clip represents
none of the other six classes.

Within the dataset most frames and clips belong to the
category ‘Other’ (O), so to prevent bias in training, we ran-
domly under-sample to achieve approximately equal numbers
for each category. We chose random under-sampling for its
simplicity and speed-up factors in model training and testing.
This sampling results in approximately 13k frames and 350
clips per class for training, and 950 frames and 30 clips per
class for validation. We use all samples for testing however
we disregard the class O in our metric calculations.

We annotate actions to begin when a player starts their
upswing for a serve, or backswing for a hit, and finish when
the follow-through of the racquet is complete. For the event
detection setting, events can be of any length, however for
event recognition we use clips of a constant 25 frames centred
on the middle frame of the untrimmed event.

D. Image Preprocessing

We crop the 1280 × 720 frames to 1200 × 700 centrally
to maximise the court area, and then resize them to a square
512×512 image. We perform mean subtraction where the mean
is calculated across the training set. Similar to past works [8],
[11], [53] we also process frames adjacent frames into optical
flow frames. That is, we first generate traditional flow features,
and then stack the x, y, and magnitude into a three dimensional
image.

E. Descriptions

Similar to [49], for Point events we also obtain one
sentence of commentary describing the point scraped from the
web (tennisearth.com). We parse the commentary to remove
player names, replacing with them with np and fp for near
and far player respectively. The near and far is based on the
viewpoint from the main camera which looks over the court
from one end. We also replace forehand and backhand with
ls or rs, for left or right side respectively, overcoming the
‘handedness’ of a particular player. Again, left and right is
based on the viewpoint from the main camera, and is based
on whether the shot is on the left or right side of the hitting
players body (not a players court position).

Upon inspection of the raw commentary data we find that
582 out of the 746 scraped descriptions (78%) are either
missing or incorrect, so we revise them to match the video. For
example, in one case the original commentary reads “High kick
serve, fp returns a ls return, short rally, np cross-court ls lands
out-side the court”, where the video shows a double fault, and
hence is altered to read “Double Fault”.We will make our
revised commentary available upon acceptance so others can
verify our alterations are indeed correct. Post-correction we
end up with one description for each Point event, with an
average sentence length of 15 words, and a vocabulary size of
223.

IV. EXPERIMENTS

We implement some standard deep learning methodologies
to generate some baselines for our new dataset for the tasks of
event recognition, event localisation, and event description. An
overview of the three pipelines can be seen in Figure 2, which
will be described in further detail in the following sections.



Similar to our work, [49] attempted to perform video
description on the same data as that seen in our dataset.
They detect court and player positions using dense trajectories
and learn phrase classifier SVMs. The phrase predictions are
smoothed across frames with a MRF model and then lexically
matched to a commentary line. A few other works also address
tennis video understanding such as retrieval [26], annotation
[7], and ball motion statistics [33]. All of these works use
domain specific processes whereas we employ a very general
purpose neural network pipeline.

A. Frame Classification

We utilise a 2D CNN for processing individual frames,
particularly we use the VGG16 network [46] as a base network
for all of our approaches. We train the network for frame
classification, with no temporal modelling. This gives us
a starting baseline against which to measure the effect of
temporal modelling, and also gives us a trained CNN which we
can use as a feature extractor for more complicated pipelines.
Following other work in the area of classification, action
recognition, and action detection we measure performance
with class-wise average precision (AP), and cross-class mean
average precision (mAP). We exclude the AP of the class
Other (O) in our mAP results as we consider it background.

1) Input Size: Unlike image and video classification, in-
cluding action recognition, where the objects of interest occupy
a large proportion of the frame, for tennis and many other video
applications this is not the case. We therefore experimented
with different input frame sizes to test the ability of the CNN to
operate with decreasing amounts of discriminative information.
We found that using the 224× 224 input size expected by the
VGG network performed similarly with other sizes 128 and
512.

2) Dense Size: Unlike ImageNet [40], which the VGG
networks were designed for, our problem only consists of 7
classes rather than 1000. Also, most (∼ 90%) of the parameters
of the original VGG models are in the two dense layers of the
networks. For these reasons we experiment with decreasing
the dimensions of the dense layers. We found decreasing the
number of dense neurons to 256 and only having 1 dense
layer rather than 2 had no negative effects on the models
classification performance. We therefore use these values for
our experiments.

3) Optical Flow: Our dataset contains fine-grained actions
which take place in very localised spatial and temporal areas,
so we expect low level motion information to be important. So
like other works [10], [45], [53] we experiment with optical
flow as an input into the CNN. We input optical flow as (1)
an individual input instead of RGB; and (2) as a combined
input into a separate optical flow and RGB CNNs akin to the
two-stream approach of [45].

Table III presents the mAP results of our framewise CNN
pipelines, with sole RGB, sole optical flow and the two-stream
model merged at different layers. We find that the sole optical
flow CNN outperforms its RGB counterpart highlighting the
importance of low level motion in our dataset. However, the
two-stream approaches attain the highest performances, with
merging at the last layer (fc1) being the most beneficial.

TABLE III. FRAME CLASSIFICATION: PER-FRAME MAP OF RGB V
FLOW V TWO-STREAM CNN MODELS

CNN Model Merged At mAP
RGB Only 0.6748
Optical Flow Only 0.7607
Two-Stream pool4 0.7978
Two-Stream pool5 0.8134
Two-Stream fc1 0.8157

B. Event / Action Recognition

The task of event (or action) recognition involves classify-
ing a trimmed clip into one class. The simplest extension of our
network to perform clip classification is to simply mean pool
the frame-wise classification scores from the Softmax (sm)
layer.

A different approach for capturing temporal information
is to use an RNN, which is known for capturing longer-
term dependencies. The RNN simply uses activations from a
particular layer in the CNN as inputs, we use either the last
pooling layer (pool5) or the last fully connected layer (fc1).
Table IV shows our results for event recognition from trimmed
clips. These results show that: 1) Simple mean pooling is very
effective, we believe this is because the CNN has high mAP
without temporal information; 2) The two-stream architecture
doesn’t provide the same performance boost that it did for
frame classification, which is likely a result of such high mAP
where better performance is extremely difficult; 3) Using a
layer which still contains spatial information such as the last
pooling layer (pool5) performs better than an input without
any spatial structure (fc1); and 4) Using a Bi-directional RNN
(Bi-RNN) is more effective than a forward direction (One-way)
RNN.

TABLE IV. EVENT RECOGNITION: CLIP MAP USING TEMPORAL MEAN
POOLING OR RNN

CNN Model Input Layer mAP

Mean Pooling
Sole RGB sm 0.9533
Sole Optical Flow sm 0.9676
Two-Stream sm 0.9798

One-way RNN

Sole RGB
pool5 0.9436
fc1 0.9095

Sole Optical Flow
pool5 0.9602
fc1 0.9288

Two-Stream fc1 0.9412

Bi-directional RNN

Sole RGB
pool5 0.9797
fc1 0.9528

Sole Optical Flow
pool5 0.9787
fc1 0.9732

Two-Stream fc1 0.9705
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Fig. 2. Overview of the three pipelines for event recognition, detection and description. All of our pipelines rely on a CNN framework trained on individual
frames. We use RNN and mean pooling to get clip classifications in event recognition, and to get frame classifications which are then joined for event detection.
We use an RNN encoder-decoder framework for event description.

C. Event / Action Detection

The task of event (or action) detection involves detecting
and classifying an event in an untrimmed clip. Since we aren’t
explicitly trying to find events of the class Other, but rather
finding instances of all of the non-Other classes, we disregard
the Other classes’ AP in our cross-class mAP evaluations.

Using our CNN’s frame classifications as a base, the
simplest way to generate action proposals is to join adjacent
frames of the same class into an event. However as our CNN
isn’t perfectly accurate, a few noisy frames within an event
will lead to many short events being proposed rather than one
longer event. As seen for event recognition in Section IV-B,
including temporal information using pooling or an RNN can
improve the performance by removing much of the noise. We
therefore utilise a temporal sliding window which performs
mean pooling across all frames within the window to get a
result at a single time point t. Deciding on window boundaries
is an important consideration, for a particular frame of interest
t, the window could include frames on either side or just one
side of t. For the framework to be strictly online, the window
can only look into the past. However for our dataset, as the
events are so short and dense, looking a few frames into the
future is very beneficial, at the cost of introducing a short lag.
Therefore our window is centred on t, where a window size wp

of 1 equates to no pooling at all. Table V shows the results for
different intersection-over-union (IoU) thresholds α, between
proposed events and ground truth events. We find that any
pooling is better than none (wp = 1) with increases in mAP
for all α. Comparing rows (2) and (3) in Figure 3, which shows
event proposals over one of the Point events in the test split,
highlights the ‘noise-removing’ effects of pooling.

Going beyond just pooling, we again use bi-directional
RNNs to generate event proposals which are less affected by
errors made by the CNN. Similar to the sliding window used
for pooling, the RNNs take CNN fc1 layer activations as
input over a centred window of size wrnn. As shown in Table
V we find that the RNNs perform better than simply mean
pooling, except for when α is high. This indicates for some few
event proposals which are the easiest to detect, mean pooling
results in more precise temporal event boundaries. Applying

mean pooling after the RNNs doesn’t increase event detection
performance, and as seen in Table VI, has different effects on
different classes. As expected the longer duration events benefit
most from longer mean pooling while events from shorter
classes are negatively affected by surrounding events when
using larger window sizes. These findings are also reflected
in Figure 3, where the pooling (row 5) has both positive and
negative effects on the RNN proposals (row 4) depending on
the particular event.

TABLE V. EVENT DETECTION: MAP OVER DIFFERENT IOU
THRESHOLDS (α) USING TEMPORAL WINDOW POOLING OF DIFFERENT

LENGTHS (wp)

wp
α

0.1 0.3 0.5 0.7 0.9

Mean Pooling sm

1 0.812 0.760 0.641 0.414 0.043
5 0.895 0.867 0.784 0.525 0.048
10 0.895 0.878 0.809 0.523 0.046
20 0.885 0.871 0.794 0.521 0.044
40 0.856 0.842 0.734 0.439 0.035

Bi-Directional RNN fc1 (wrnn = 25)
1 0.898 0.877 0.798 0.528 0.032
40 0.854 0.840 0.763 0.449 0.026

Bi-Directional RNN fc1 (wrnn = 40)
1 0.905 0.886 0.814 0.481 0.028
40 0.864 0.846 0.759 0.387 0.020

D. Event Description

We implement a sequence-to-sequence RNN framework,
similar to that in [53], to generate commentary descriptions.
Our sequence-to-sequence RNN consists of 4 one-way layers
(2 encoding, 2 decoding) each with 256 GRU units. We
manually split the sequences into Points as they are marked-
up in the dataset. Each Point is represented by a sequence
of CNN fc1 activations, and each possesses a sequence of



O SN HFL O HNR O HFR O HNR O HFL O HNR O HFR O HNL O HFL O

0.125 0.000 0.349 0.808 0.778 0.684 0.862 0.844 0.968 0.389 0.882 0.395 0.000

0.679 0.700 0.757 0.789 0.794 0.844 0.750 0.667 0.536 0.388

0.761 0.808 0.789 0.912 0.853 0.833 0.690 0.528 0.577 0.415

0.787 0.692 0.750 0.912 0.853 0.862 0.667 0.528 0.714 0.400

Fig. 3. Event timelines across a single Point in untrimmed video. Each vertical bar is a frame, bar height is confidence, numbers are IoU %. Rows from top:
(1) Ground truth; (2) Two-Stream Framewise CNN (3) Two-Stream Pooled wp = 40 (4) Bi-RNN fc1 (wrnn = 40); (5) Bi-RNN fc1 (wrnn = 40) wp = 40.

TABLE VI. AVERAGE PRECISION (AP) FOR DIFFERENT CLASSES
USING TEMPORAL WINDOW POOLING OF DIFFERENT LENGTHS (wp) WITH

IOU THRESHOLD (α = 0.5).

class
w

1 5 10 20 40
Mean Pooling sm

O 0.121 0.286 0.357 0.398 0.402
HNR 0.806 0.900 0.910 0.925 0.846
HNL 0.681 0.748 0.732 0.692 0.605
HFR 0.657 0.771 0.811 0.808 0.789
HFL 0.567 0.679 0.747 0.765 0.698
SN 0.629 0.813 0.805 0.749 0.728
SF 0.508 0.795 0.850 0.827 0.738

Bi-Directional RNN fc1 (wrnn = 40)
O 0.419 0.419 0.420 0.422 0.425

HNR 0.881 0.877 0.871 0.866 0.797
HNL 0.750 0.759 0.749 0.744 0.674
HFR 0.820 0.842 0.853 0.852 0.748
HFL 0.739 0.705 0.684 0.677 0.601
SN 0.898 0.916 0.921 0.938 0.906
SF 0.796 0.814 0.849 0.860 0.829

words making up the commentary sentence. For this network
it is necessary to build a vocabulary of all possible words (all
those found in the dataset) and represent each with a different
vector. Due to the low number of words in our vocabulary we
simply use one-hot vectors for each word, compared to other
works which use an embedding for their larger vocabularies.

To measure commentary generation performance we utilise
commonly used metrics for sentence comparison seen in
previous video description works BLEU [31] , METEOR
[2], CIDEr [52] and ROUGE-L [23]. We use the Microsoft
Evaluation Server [5] to generate these statistics. Table VII
presents the results of our event description framework in terms
of these metrics. We investigate if there is a link between
the classification performance of our CNN models and the
sentence generation performance. Although the two-stream
CNN based pipeline achieves the best scores across all metrics,
there appears to be no correlation between a CNNs mAP and
commentary generation performance for our particular models

and data. This could be because all CNNs are already accurate
enough, especially after encoder processing, for the description
RNNs learning capacity with our data. All models perform
better than random retrieval of descriptions from the test set.

TABLE VII. EVENT DESCRIPTION: BLEU4 (B4), METEOR (M),
CIDER (C) AND ROUGE-L (RL) RESULTS WITH INPUT FEATURES FROM

DIFFERENT PERFORMING CNN MODELS.

CNN Model mAP B4 M C RL
Rdm. Retrieves 0.0593 0.1493 0.2713 0.3147
RGB Only 0.6748 0.1038 0.2014 0.5729 0.4078
Optical Flow Only 0.7607 0.0839 0.1905 0.4486 0.4053
Two-Stream 0.8157 0.1284 0.2223 0.6777 0.4518

We believe the standard metrics are not a reliable indication
of how ‘good’ a description is as they all rely on word
matching. Particularly for our task where the vocabulary is
small, a single word difference, for example near player
v far player, might completely change the meaning of the
description. With this in mind we provide some example results
in Table VIII which we believe provides a better indication
of how well our model is able to generate sentences. In
the table we highlight ‘concept’ errors in red, and sentence
generation errors in blue. Empirically, sentences are mostly
correct however they can suffer from repeated or misplaced
words, as well as the occasional concept error.

E. Implementation Details

We use the Keras library [6] to train and test our models.
All CNN models in our experiments are trained in similar
circumstances, using stochastic gradient descent over 5 epochs,
with a learning rate of 0.01, a decay of 1 × 10−6 and
momentum of 0.5. The loss function employed is categorical
cross-entropy. We sample the validation accuracy every epoch,
and take the highest scoring model for testing. Similarly for
our RNN models we train all with equal parameters, using
RMSProp with learning rate of 0.001 and ρ = 0.9, and
again categorical cross-entropy loss. The RNNs are made up
of layers of Gated Recurrent Units (GRU), which have been
shown to achieve similar results to Long-Short Term Memory
Units (LSTM) while using less parameters. For the sentence
generation encoder-decoder RNN we use the same learning
rate of 0.001 and ρ = 0.9 but employ mean squared error as
the loss function.



TABLE VIII. EVENT DESCRIPTION: EXAMPLES WITH TWO-STREAM CNN. GREEN: CORRECT, RED: CONCEPT INCORRECT, BLUE: SENTENCE
GENERATION ERROR.

Point ID Ground Truth Sentence Predicted Sentence
P00000628 good serve aimed in the corner np only reaches to it sharp angled slice serve is an ace over the net
P00000627 good serve in the middle np crafts a rs return a brief rally

fp rs cross-court is a winner
good serve in the middle np returns a rs return short rally
np produces a rs cross-court winner the line

P00000743 quick serve fp returns a rs return rally np cross-court rs
fails to clear the net in the middle

heavy serve serve fp crafts a rs return couple of shots
exchanged np rs a rs a rs the the net

P00000597 fp hits a flat bodyline serve np struggles to put it back fp arrows a serve serve np return it over net
P00000746 lightening serve down t is an ace np serves out ace wide wide wide
P00000606 good serve in the middle fp returns a rs np hits a rs winner np aims a bodyline serve at t fp an no
P00000600 fp serves a good one np delivers a ls return good rally fp

hits a ls cross-court drop-shot winner
fp serves a good one np delivers a ls return brief rally np
hits to rs net the the net

V. CONCLUSION

This work introduces a unified dataset for the problems
of event recognition, detection and description in video. The
dataset focuses on dense fine-grained events enabling the
generation of event dependent and contextually relevant de-
scriptions. We form some initial baseline results using recent
deep learning approaches finding that, although the framework
is relatively simple and generalised, it is still able to achieve
impressive results across all tasks.

We see this work as a first step towards the extraction of
more detailed and useful information from video. By placing
greater focus on movement, actions and events we are able
to produce detailed descriptions of long and complex video
sequences. In future, we believe this will support deeper video
understanding, such as the ability to learn the rules of a game
by watching it being played for a period of time.

We recognise a few shortcomings of our dataset. Firstly,
in relation to recent datasets utilised for deep methodologies,
our is relatively small and therefore vulnerable to over-fitting
with these deep models. Like most cases acquiring such
detailed and domain specific information is not a straighfoward
task. Labelling and temporal alignment of events manually is
not feasible at large scale. Secondly, although the actions in
our dataset are fine-grained, we believe our CNN framework
finds player court positioning, movement and pose the most
discriminative cues for deciding on our action classes. This
could be alleviated to some degree by making the classes even
more specific, such as topspin, slice, backspin, etc.
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