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OUTLINE

 Address the multifaceted Traveling Thief Problem (TTP)

 Introduce a new fast basic heuristic method for 
achieving a good packing of items provided a tour

 Introduce two additional operators, one of which alters 
a packed tour based on packing

 Compare varying combinations and setups of the 
heuristic and operators
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THE TRAVELING THIEF PROBLEM (TTP)

 𝑛 cities, with distances 𝑑(𝑖, 𝑗) between cities 𝑖 and 𝑗

 𝑚 items, each with weight 𝑤𝑖𝑘 and profit 𝑝𝑖𝑘

 Knapsack capacity 𝑊

 Renting rate 𝑅

 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 representing the minimal and maximal    
speed of the traveller
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THE TRAVELING THIEF PROBLEM (TTP)

 Goal: Visit each city exactly once, maximising the total profit 𝑃
such that the total weight does not exceed the knapsack capacity
𝑊, where 𝑃 is defined as: 

𝑃 =  

𝑖=1

𝑚

𝑝𝑖 𝑥𝑖 − 𝑅 

𝑖=1

𝑛

𝑡𝑖,𝑖+1

where 𝑥𝑖 = 1 0 depending on whether the item 𝑖 is picked 1 or 
not 0 , and 𝑡𝑖,𝑗 is defined as:

𝑡𝑖,𝑗 =
𝑑(Π𝑖 , Π𝑗)

𝑣𝑚𝑎𝑥 −𝑊Π𝑖
𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
𝑊

where Π𝑖 is the city at tour position 𝑖 in tour the Π, and 𝑊Π𝑖 is the 

current weight of the knapsack at city Π𝑖.
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THE TRAVELING THIEF PROBLEM (TTP)

 Composed of the merging of the Traveling Salesman 
Problem and the Knapsack Problem
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FAST PACKING ROUTINE USING BASIC HEURISTIC

 Finds a TSP solution using Chained-Lin-Kernighan [1]

 Using the fixed TSP solution, generates a solution for 
KP problem

 Ignores the interdependency between the individual 
TSP and KP problems
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FAST PACKING ROUTINE USING BASIC HEURISTIC
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FAST PACKING ROUTINE USING BASIC HEURISTIC

 Calculate heuristic score 𝑠𝑖𝑘 for each item
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FAST PACKING ROUTINE USING BASIC HEURISTIC

 Calculate heuristic score 𝑠𝑖𝑘 for each item

 Sorts items in non-decreasing order based on score 𝑠𝑖𝑘

 Greedily adds items to the packing plan until objective 
value no longer increases
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FAST PACKING ROUTINE USING BASIC HEURISTIC
𝑣 =  𝑚 𝜏
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FAST PACKING ROUTINE USING BASIC HEURISTIC



16

FAST PACKING ROUTINE USING BASIC HEURISTIC
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FAST PACKING ROUTINE USING BASIC HEURISTIC
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FAST PACKING ROUTINE USING BASIC HEURISTIC
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FAST BASIC HEURISTIC

 Once a fixed tour calculated, a score 𝑠𝑖𝑘 is calculated for each 
item 𝑘 in city 𝑖:

𝑠𝑖𝑘 =
𝑝𝑖𝑘
𝑤𝑖𝑘

where 𝑝𝑖𝑘 and 𝑤𝑖𝑘 is the profit and weight of item 𝑘 respectively.
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FAST BASIC HEURISTIC

 Once a fixed tour calculated, a score 𝑠𝑖𝑘 is calculated for each 
item 𝑘 in city 𝑖:

𝑠𝑖𝑘 =
𝑝𝑖𝑘
𝑤𝑖𝑘 × 𝑑𝑖

where 𝑝𝑖𝑘 and 𝑤𝑖𝑘 is the profit and weight of item 𝑘 respectively, 
and 𝑑𝑖 is the distance from city 𝑖 to the end of the tour.
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FAST BASIC HEURISTIC

 Once a fixed tour calculated, a score 𝑠𝑖𝑘 is calculated for each 
item 𝑘 in city 𝑖:

𝑠𝑖𝑘 =
𝑝𝑖𝑘
𝑥

𝑤𝑖𝑘
𝑦
× 𝑑𝑖
𝑧

where 𝑝𝑖𝑘 and 𝑤𝑖𝑘 is the profit and weight of item 𝑘 respectively, 
and 𝑑𝑖 is the distance from city 𝑖 to the end of the tour.
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FAST BASIC HEURISTIC
𝑥
𝑦
𝑧

𝑥
𝑦
𝑧
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FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480 INSTANCE: pcb3038_n9111

𝑥
𝑦
𝑧

𝑥
𝑦
𝑧

*objective scores averaged over 50 unique tours
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FAST BASIC HEURISTIC

 Once a fixed tour calculated, a score 𝑠𝑖𝑘 is calculated for each 
item 𝑘 in city 𝑖:

𝑠𝑖𝑘 =
𝑝𝑖𝑘
𝛼

𝑤𝑖𝑘
𝛼 × 𝑑𝑖

where 𝑝𝑖𝑘 and 𝑤𝑖𝑘 is the profit and weight of item 𝑘 respectively, 
and 𝑑𝑖 is the distance from city 𝑖 to the end of the tour.
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FAST BASIC HEURISTIC

HOW TO FIND α?
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FAST BASIC HEURISTIC
𝛼 𝛼
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FAST BASIC HEURISTIC
𝛼 𝛼

*objective scores averaged over 50 unique tours

INSTANCE: rl11849_n118480 INSTANCE: pcb3038_n9111
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FAST BASIC HEURISTIC
𝛼

*objective scores averaged over 50 unique tours

INSTANCE: rl11849_n118480
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FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝑍𝑙

𝑍𝑚

𝑍𝑟
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INSTANCE: rl11849_n118480_uncorr_02
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FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝛼 = 2.4725
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ADDITIONAL OPERATORS

 The fast basic packing approach is not guaranteed to find globally 
optimal TTP solution:

1. Doesn’t modify tours based on items

2. The packing plan it finds may not be optimal for a given tour

 Introduce two local search operations to slightly improve on a 
given tour and packing plan:

1. BitFlip – Only modifies packing plan

2. Insertion – Modifies tour based on provided packing plan
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BITFLIP

 Iteratively evaluates the outcome of flipping each bit position 
corresponding to each item 𝐼𝑚 ∈ 𝑀 in the packing plan 𝑃

 If flipping the bit improves the objective value then the change is 
kept, otherwise the packing plan is restored

 Can be time consuming on instances with a large number of items 
as every item is checked

 Can be run consecutively a number of times to increase 
improvements
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INSERTION

 Takes advantage of situation where valuable item is picked up at a 
particular city early in the tour and is worth visiting the city later 
in the tour
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INSERTION

 Searches over cities in reverse tour order evaluating the effect of 
inserting each city at all positions before its own in the tour

 If one or more positions are found, the one that achieves the 
highest objective score is chosen

 Typical good TTP solutions, and solutions constructed by the fast 
basic heuristic, have many items picked up towards the end of the 
tours, hence the time consuming Insertion operator begins at the 
end of the tour

 Experiments show Insertion makes rare and minor improvements 
to a TTP solution provided by the fast basic heuristic
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ALGORITHM COMBINATIONS

S1: CLK > Fast Packing

S2: CLK > Fast Packing > BitFlip until convergence or time expired

S3: CLK > Fast Packing > (1+1)-EA until convergence or time expired 

S4: CLK > Fast Packing > Insertion until convergence or time expired

S5: repeat S1 until time expired

[1] (1+1)-EA is similar to BitFlip however instead of changing every 
bit which improves the objective score, each bit is changed with a 

probability 
1

𝑚 CLK: Chained Lin-Kernighan
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ALGORITHM COMBINATIONS

C1: CLK > Fast Packing > repeat one BitFlip then one Insertion until 
convergence or time expired

C2: CLK > Fast Packing > repeat one BitFlip then one (1+1)-EA then 
one Insertion until convergence or time expired

C3: Repeat CLK then Fast Packing until 10% of time expired pick best 
> one BitFlip then one Insertion until time expired

C4: Repeat CLK then Fast Packing until 10% of time expired pick best 
> one BitFlip then one (1+1)-EA then one Insertion until time 
expired

C5: repeat C1 until time expired

C6: repeat C2 until time expired
CLK: Chained Lin-Kernighan
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MIP APPROACH

MIP (Mixed Integer Programming) approach of Polyakovskiy, 
Neumann (2014):

 Given tour able to solve optimal packing plan exactly or 
approximately

 Very costly in regard to runtimes as it uses a linearization 
technique to handle non-linear terms in the objective 
function



53

EXPERIMENTS

 Compare our algorithm combinations S1-S5 and C1-C6 with the 
MIP and the MATLS (Memetic Algorithm with the Two-stage 
Local Search) approach of Mei, Li, Yao (2014)

 Use comprehensive set of benchmark instances from [1,4]:

• 51 – 85900 cities

• three types: uncorrelated, uncorrelated with similar weights, 
and bounded strongly correlated

• 1,3,5, or 10 items per city for each TSP and KP combination

• For each TTP configuration there is 10 different instances 
with varying knapsack capacities
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EXPERIMENTS

 From the 9720 benchmark instances 72 representative cases 
were selected:

• six different number of cities: 195, 783, 3038, 11849, 
33810, 85900

• all types: uncorrelated, uncorrelated with similar weights, 
and bounded strongly correlated

• Two different items per city: 3 and 10

• Two different knapsack capacities: 3 and 7 times the size of 
the smallest knapsack

 All algorithms run for 10 minutes per instance, except MIP which 
ran for 8 hours on instances where 𝑛 ∈ {33810, 85900}

 30 independent repetitions of algorithms on each instance
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RESULTS

 𝛼 is relatively equal for 
similar types of instances 
no matter instance size

 Bounded-strongly have 
highest and most 
variable 𝛼

 As knapsack capacity 𝑊
increases, 𝛼 decreases
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RESULTS

Comparison of the number of first, second, and third placings of S algorithms across the 72 instances

 S5 clearly outperforms the others, showing the importance of a 
good initial tour

 S2-S4 relatively equal runners up showing they perform on 
instances where the others do not

 The placings of S4 highlight the necessity to consider 
modifications to the tour of a TTP solution
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RESULTS

Comparison of the number of first, second, and third placings of C algorithms across the 72 instances

 Recall that C3 and C4 sample several starting tour options, compared to 
C1 and C2, and that C5 and C6 are the restart variants of C1 and C2

 The dominance C3 and C4 again suggest the importance of finding a 
good initial TSP tour solution

 C5 and C6 perform better than the single iteration C1 and C2 methods, 
however they do not perform as well as C3 and C4 which have more 
time to sample a greater number of initial tours
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RESULTS

Comparison of the number of first, second, and third placings of all algorithms across the 72 instances

EA: Evolutionary Algorithm, RLS: Random Local Search, SH: Simple Heuristic. All from [1].

 S5, MIP, and MATLS are the best performing algorithms overall
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RESULTS

Objective value ratios compared to maximum found across all algorithms and iterations
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CONCLUSIONS

 The strength of our fast basic packing heuristic is its 
speed, allowing more initial Lin-Kernighan tours to be 
sampled (15-60 milliseconds for 195 cities, and 18-
110 seconds for 85,900 cities)

 Local search operators such as BitFlip and Insertion 
have positive yet limited effect due to their 
computational complexity

 Even MIP approach only just achieves comparable 
performance with the limited time availability
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