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Abstract—We analyse experimentally the region covariance
descriptor which has proven useful in numerous computer
vision applications. The properties of the descriptor—despite its
widespread deployment—are not well understood or documented.
In an attempt to uncover key attributes of the descriptor, we
characterise the interdependence between the choice of features
and distance measures through a series of meticulously designed
and performed experiments. Our results paint a rather complex
picture and underscore the necessity for more extensive empirical
and theoretical work. In light of our findings, there is reason to
believe that the region covariance descriptor will prove useful
for methods that perform image super-resolution, deblurring, and
denoising based on matching and retrieval of image patches from
an image dictionary.

I. INTRODUCTION

A modern computer vision pipeline for generic image
classification and recognition consists of three broad con-
ceptual steps. The first step involves selecting suitable im-
age descriptors that capture essential characteristics of the
class of images that need to be recognised. The second step
involves the definition of a measure of similarity between
feature descriptors. This is typically achieved by introducing
a proper notion of distance between feature descriptors, with
the intuitive interpretation that close feature descriptors are
similar. The final step requires learning a classification rule
that uses the feature descriptors and corresponding similarity
measure to determine what the image represents. In this
paper we discuss topics that touch upon the first two steps
of the pipeline—the selection of suitable image descriptors
and the definition of an appropriate distance. In this con-
nection, we explore the region covariance descriptor which
has proven to be very effective for a variety of computer
vision tasks. Our aim is to gain a deeper understanding of this
feature descriptor together with three accompanying measures
of distance which are frequently utilised. We are motivated
by the fact that despite the widespread use of the region
covariance descriptor, its strengths and limitations are not well
understood nor documented. Moreover, there appears to be no
comprehensive appraisal of the impact that the choice of the
measure of distance has on the utility of the descriptor. In fact,

it seems that the choice of distance measure is problem and
domain specific. On any given classification task, the distance
measure is typically chosen on an ad-hoc basis, without any
attempt to understand or characterise why a particular distance
measure works better or worse. We take a first step toward
addressing this knowledge gap by designing and conducting
a series of targeted experiments which explore the strengths
and limitations of the region covariance descriptor and three
associated distance measures.

II. RELATED WORK

A number of region descriptors have been proposed in
the literature for a variety of tasks such as recognition and
tracking. Among the simplest is the vector of pixel intensities
[1]; however, raw image pixel intensities are poor descriptors
because they are too variant to illumination and pose changes.
Pixel intensities merely record the appearance of a scene. They
do not model attributes of an image, and therefore cannot
readily characterise what an image represents. Considerable
research has focused on the development of useful region
descriptors that take into account aspects such as colour,
texture, and shape. A full account of the entire spectrum of
descriptors is beyond the scope of this paper. Instead, we focus
on the region covariance descriptor. Conceptually simple and
with considerable expressive potential, the region covariance
descriptor can capture aspects of colour, texture, and shape
simultaneously by modelling the variations and correlations
of various features in a region. In recent years it has been
used in a variety of contexts, including tracking [2], detection
and matching [3]–[9], as well as classification and recognition
[10]–[14]. While some attempts have been made to charac-
terise the performance of the region covariance descriptor [15],
the evaluation has not been very comprehensive nor systematic.
It has already been acknowledged that the choice of distance
function matters [12], [16]. Nevertheless, limited attempts have
been made to understand why a particular selection of features
and a particular choice of distance metric works better for
certain problems and not for others.



TABLE I: Description of Potential Features for φ(x)

Notation Description

xy
x spatial x coordinate
y spatial y coordinate

rgb
r red channel
g green channel
b blue channel

∂

|Ix| magnitude of first-order partial
derivative in horizontal direction

|Iy| magnitude of first-order partial
derivative in vertical direction

∂2

|Ixx| magnitude of second-order partial
derivative in horizontal direction

|Iyy| magnitude of second-order partial
derivative in vertical direction

|Ixy| magnitude of second-order mixed
partial derivative

edge

√
I2x + I2y magnitude of edge response

tan−1(
|Iy|
|Ix| ) edge orientation

lab
l luminance (LAB colour space)
a a channel (LAB colour space)
b b channel (LAB colour space)

III. METHOD

A. Covariance Descriptor

Let x ∈ R2 denote the spatial coordinates of a pixel in
an image Ω. Given a rectangular region of interest R in Ω
and a feature mapping φ : Ω→ Rn, the corresponding region
covariance matrix is given by

ΛR =
1

|R| − 1

∑
x∈R

(φ(x)− µR)(φ(x)− µR)T,

where µR = |R|−1
∑

x∈R φ(x) and |R| denotes the number
of pixels in the region of interest. The matrix ΛR describes
the variations of the length-n feature vectors φ(x) as x varies
over the region R. In this work we explore several candidate
feature mappings obtained by selecting component elements
from the set of features described in Table I.

B. Distance Measures

Covariance matrices are positive-definite and one can speak
about a distance between a pair of covariance matrices once
a distance measure is defined between members of the set
of all real positive-definite matrices. Let Sym(n) denote the
set of all n × n symmetric real matrices, and let Sym+(n)
denote the subset of Sym(n) comprised of all n× n positive-
definite matrices in Sym(n). Sym+(n) can be endowed with
a variety of distance measures [12], [17]. In what follows we
shall consider three specific distances. One is the Euclidean
metric given by

distE(P,Q) = ‖P−Q‖F ,

where ‖·‖F denotes the Frobenius norm, and P and Q are
members of Sym+(n). Another is the Log-Euclidean metric
given by

distL(P,Q) = ‖log P− log Q‖F ,

where log denotes the principal matrix logarithm1 [20]. Yet
another distance measure is the affine-invariant metric given
by

distA(P,Q) =
∥∥log(P−1Q)

∥∥
F

=
∥∥∥log

(
P−1/2QP−1/2

)∥∥∥
F

(cf. [21, Chap. XII]). The label “affine-invariant” reflects the
fact that distA is invariant under each mapping of the form
P 7→ APAT, where A is a real invertible matrix A; that is,

distA(P,Q) = distA(APAT,AQAT)

for all P,Q ∈ Sym+(n) and all invertible n× n matrices A.
The affine-invariant metric can alternatively be written as

distA(P,Q) =

(
n∑
i=1

log2 λi(P
−1Q)

) 1
2

, (1)

where λi(P−1Q), 1 ≤ i ≤ n, are the eigenvalues of P−1Q.
As the matrix P−1Q is similar to the symmetric matrix
P−1/2QP−1/2, the eigenvalues λi(P−1Q) are all positive and
hence the right-hand side of (1) is well defined for all P and
Q in Sym+(n).

Despite the differences in form, there is a unifying trait
among the three selected distances—each distance can be
interpreted as a geodesic distance with respect to a Riemannian
metric on Sym+(n). To be more specific, note first that
Sym+(n) forms an open cone of the n(n+ 1)/2-dimensional
linear space Sym(n). It then follows that Sym+(n) is a
manifold whose tangent space at any foot point P can be
identified with Sym(n). Recall that a Riemannian metric
on Sym+(n) is a family of inner products {gP}P∈Sym+(n)

depending smoothly on the foot point P. Given a Riemannian
metric {gP}P∈Sym+(n), the length of a differentiable path
γ : [a, b]→ Sym+(n) from P = γ(a) to Q = γ(b) is defined
as

L(γ) =

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t)) dt.

The geodesic distance between points P and Q in Sym+(n)
is given by

inf{L(γ) | γ is a differentiable path from P to Q}.

Now, as it turns out, the distances distE, distL, and distA
can be interpreted as geodesic distances corresponding to the
Riemannian metrics

gEP(X,Y) = Tr(XY),

gLP(X,Y) = Tr
((

D log(P)[X]
)(

D log(P)[Y]
))
,

gAP(X,Y) = Tr(P−1XP−1Y)

(X,Y ∈ Sym(n)),

respectively. Here D log(P) : Sym(n)→ Sym(n) denotes the
Fréchet differential (or Fréchet derivative) of the log map-
ping at P. There is no closed-form expression for D log(P)
amenable to easy implementation, however the following in-

1When A is an invertible matrix without non-negative eigenvalues, there
exists a unique real logarithm of A, called the principal logarithm and denoted
logA, whose eigenvalues lie in the strip {z ∈ C | −π < Imz < π} (cf. [18,
Theorem 1.31], [19]).



tegral representation holds

D log(P)[X] =

∫ 1

0

((P−In)t+In)−1X((P−In)t+In)−1 dt,

this being reminiscent of the numerical formula∫ 1

0

1

((p− 1)t+ 1)2
dt = −1

p

[
1

(p− 1)t+ 1

]1
0

=
1

p
= (log p)′

(cf. [22] [18, p. 272]).

The Euclidean and Log-Euclidean metrics are of direct
significance from the machine learning perspective. It turns
out that each of these metrics leads to a family {Kλ}λ>0 of
positive-definite kernels of the form

Kλ(P,Q) = exp (−λ dist(P,Q))

(cf. [12], [17], [23]). For any fixed λ > 0, the kernel Kλ

can be used to construct a pattern classifier taking the form
of a kernel support vector machine. In the case of the affine-
invariant metric, there exist positive values λ for which Kλ is
not positive definite [23], [24]. The significance of the affine-
invariant metric stems mainly from its frequent appearance in
various differential-geometric contexts including that of the
Riemannian mean for positive-definite matrices [25].

C. Singular Covariance Matrices

In practice it is possible for the region covariance descriptor
to occasionally produce a rank deficient covariance matrix.
This can occur when some linear dependencies emerge in
the feature vectors. For example, if the red, green, and blue
channels are included in the feature vector, but the image
happens to be greyscale, the colour channels will be linearly
dependent and the corresponding covariance matrix will be
rank deficient and no longer positive definite. To circumvent
potential rank deficiency, we perform, given a covariance ma-
trix, a rank revealing QR decomposition with column pivoting.
The decomposition allows us to identify a subset of linearly
independent features.

For a n × n covariance matrix ΛR, the QR factorisation
of ΛR with column pivoting is given by ΛRP = QR,
where P is a permutation matrix, Q is orthogonal, and R
is upper triangular with non-negative diagonal entries sorted
in descending order of magnitude, all the matrices here being
n×n matrices. The permutation matrix is chosen such that R
has the structure

R =

[
R11 R12

0 R22

]
,

where R22 is a k × k matrix, 1 ≤ k ≤ n, with k chosen
so that ‖R22‖ is small. The selection of k is motivated by
the fact that σn−k+1(ΛR) ≤ ‖R22‖, where σi(A) denotes
the ith singular value of A. The above inequality ensures
that if ‖R22‖ is small, then ΛR has at least k small singular
values, suggesting potential rank deficiency [26]. One can use
the permutation matrix to identify which columns of ΛR are
involved in the formation of R22. Based on this information,
the corresponding problematic features can then be removed
from the feature vector thereby restoring linear independence
and the requisite positive-definite property.

IV. EXPERIMENTS

To evaluate the three distance measures we performed
a number of comprehensive experiments using a novel face
dataset. The purpose of the experiments was to investigate how
each of the distance measures perform under varying image
transformations and with varying feature sets.

A. Dataset

We evaluated the distance measures on images of human
faces because faces strike a balance between similarity in the
form of general structure, and dissimilarity in the form of age,
sex, ethnicity, and personal individuality. Despite an abundance
of established and publicly available face datasets [27]–[29],
we utilised a new dataset called Humanœ which was created
by the artist Angélica Dass2. This dataset offers numerous
advantages for our targeted experiments. In particular, since
it aims to capture the whole gamut of human skin tones, it
spans broad age and ethnic groups. Moreover, all subjects are
professionally photographed from a frontal perspective with
controlled lighting and a uniform background. At the time
of writing, the dataset contained 2,387 unique (no repeated
persons) colour face images of dimension 500 × 500 pixels.
We performed additional processing by centering all images on
the nose and cropping to 319× 319 pixels, thereby removing
the text along the bottom of each image (see Figure 1).

Original Nose Detection Centred & Cropped

Fig. 1: Dataset processing.

B. Comparison Types

Our set of experiments can be split into two conceptual
categories: within and among. Both rely on measuring dis-
tances between a set of images, the comparable set, and a
single original image from the database, the base image.

1) within: In the within experiments the comparable set
consisted solely of transformed versions of the base image,
and the base image was compared to each transformed image
using one of the distance measures. The purpose of these
experiments was to characterise how the distance measures
express—on average—the similarity between the base image
and the transformed images.

2) among: In the among experiments the comparable set
was composed of transformed versions of the base image as
well as the entire dataset of non-transformed face images (the
base image was excluded). The goal of these experiments was
to determine whether the base image has greater similarity to
transformed versions of itself rather than to other faces in the
dataset. The experiments were posed as I query and retrieval

2All Humanœ images are copyrighted and used strictly with permission
from Angélica Dass. Available at: http://humanae.tumblr.com/



tasks with I = 2,387. In particular, the nearest neighbours
of every base image in the dataset were retrieved using each
distance measure. To quantify the retrieval results for the ith
base image (i = 1, . . . , I), we first computed a precision per
k nearest neighbours,

pik =
number of retrieved transformed images

k

for k = 1, . . . ,K, where K represents the total number of
transformed base images. The precision scores were subse-
quently used to calculate the average precision for the ith
query:

µi =

(
K∑
k=1

1(k)

)−1 K∑
k=1

pik1(k),

where the indicator function 1(k) is one if the kth nearest
neighbour is a transformed base image and zero otherwise.
Hence the term

∑K
k=1 1(k) counts the total number of trans-

formed base images in a query of size K, and only precision
values for which the kth nearest neighbour is also a correct
retrieval contribute to the average precision score. In order to
summarise how the distance measures perform we report the
mean average precision given by

MAP =
1

I

I∑
i=1

µi.

If the problem at hand is recognising the same image or person
under varying conditions or transformations, then a higher
mean average precision value is desirable.

C. Feature Sets

In all experiments we considered various feature combina-
tions in an attempt to identify combinations that perform well
for particular images, transformations, or distance measures.
The six specific different feature sets that we used are shown
in Table I.

D. Transforms

We considered a broad range of geometric and photometric
image transformations in order to increase the chance of
discovering pertinent attributes for the distance measures.

1) Rotation (Geometric Transformation): Rotation trans-
formations were obtained by rotating the base image anti-
clockwise by σ degrees, where σ ∈ {5, 10, 15, . . . , 355}
(Figure 2). Images were post-transformation cropped to ensure
that the pixels around the edges were from the original image
and not black or hallucinated.

Fig. 2: The effect of the rotation transformation. From left to
right σ = 5, 90, 180, 270, 355 degrees.

2) Gaussian Blur (Photometric Transformation): Gaussian
blur transformations were applied with an isotropic Gaussian
filter where the window size of the filer and the standard
deviation of the Gaussian were both controlled by σ, with
σ ∈ {2, 4, 6, . . . , 100} pixels (Figure 3).

Fig. 3: The effect of the Gaussian blur transformation. From
left to right σ = 0, 25, 50, 75, 100.

3) Gaussian Noise (Photometric Transformation): For the
Gaussian noise transform each pixel was perturbed with
independent Gaussian noise having mean 0.1 and variance
σ ∈ {0.05, 0.1, 0.15, . . . , 0.75} (Figure 4).

Fig. 4: The effect of the Gaussian noise transformation. From
left to right σ = 0, 0.15, 0.3, 0.45, 0.75.

4) Brightness (Photometric Transformation): Brightness
transformations were applied by transforming the RGB image
to HSV and adding a value σ to the value channel, where
σ ∈ {−1,−0.9,−0.8, . . . , 0.9, 1} (Figure 5).

Fig. 5: The effect of the brightness (value) transformation.
From left to right σ = −1,−0.5, 0, 0.5, 1.

5) Saturation (Photometric Transformation): The satura-
tion transformation worked similarly to brightness: the image
was converted from RGB to HSV, but now the saturation
channel was modified, again by adding a value σ, where
σ ∈ {−1,−0.9,−0.8, . . . , 0.9, 1} (Figure 6).

Fig. 6: The effect of the saturation transformation. From left
to right σ = −1,−0.5, 0, 0.5, 1.

V. RESULTS

The results for the within experiments are presented in the
form of line graphs, with the x-axis denoting the value of
the parameter governing a particular photometric or geometric
image transformation and the y-axis depicting the value of the



corresponding distance. Instead of displaying the raw distance
values, we normalise the distance measures by ensuring that
the area under the graph sums to one. This facilitates visual
comparison between methods.

The ranking precisions gathered using the among experi-
ments are shown using tables. Each row of the table represents
one feature combination and the headings ‘Excl.’ and ‘Incl.’
serve as modifiers to indicate whether a particular feature
combination was excluded or included in an experiment. For
example, the row ‘None’ under the heading ‘Excl.’ signifies
that all features were utilised and is considered our baseline.
On the other hand, the row ‘rgb’ under the heading ‘Incl.’
indicates that only the rgb feature was utilised. Each cell
value in the table represents the mean average precision,
and the value in parentheses denotes the difference from the
baseline. The numbers in the parentheses therefore quantify
to what extent the inclusion or exclusion of a particular
feature improves or decreases the retrieval performance when
compared to the baseline.

A. Rotation

A visual inspection of the graph of the within rotation
results presented in Figure 7 suggests that distE is biased for
particular rotations because the graph is not symmetric with
respect to a rotation of 180 degrees. This is especially evident
when the graph of distE is compared with the graphs of distL
and distA which exhibit symmetry. Overall distA performs
best with rotations less than 90 or greater than 270 degrees
resulting in the smallest distances. For both distL and distA
a rotation of 180 degrees achieves a smaller distance measure
than the rotations between 90 and 270 degrees.

The among rotation results (Table II) show that distA and
distL perform substantially better than distE when including
all features. The relevance of the colour features is also evident
when considering the other two measures; the best result for
each measure was achieved by only including colour features.
This outcome is unsurprising, since the colour distribution in
an image does not change substantially when the image is
rotated.

TABLE II: Rotation Mean Average Precision

Excl. distE distL distA

None 8.73 63.83 71.32
xy 9.85 (+1.12) 71.40 (+7.57) 84.43 (+13.11)
rgb 8.73 (-0.00) 48.78 (-15.05) 36.81 (-34.51)
∂ 8.73 (0.00) 67.28 (+3.45) 73.85 (+2.53)
∂2 8.73 (0.00) 66.33 (+2.51) 73.39 (+2.07)
edge 12.84 (+4.10) 65.56 (+1.73) 73.29 (+1.98)
lab 4.93 (-3.81) 56.31 (-7.52) 37.39 (-33.93)
Incl. distE distL distA

rgb 41.46 (+32.73) 87.74 (+23.91) 89.99 (+18.67)
lab 53.15 (+44.42) 87.76 (+23.93) 88.42 (+17.10)
rgb, lab 53.15 (+44.42) 87.31 (+23.48) 94.65 (+23.33)

B. Blur

The results of the within experiments (Figure 8) show
that as the degree of blurring increases the resultant distance
increases for all three measures at a reasonably linear rate.

The results of the among experiments (Table III) demon-
strate the effectiveness of the distE measure, which achieves
much higher precision than the other two metrics. Additionally,
excluding the edge features significantly improves results for
distE, increasing the precision by 25%. Considering different
active feature combinations, the best results are achieved by
those which contain the colour (rgb and lab) and position (xy)
features, with the xy and rgb combination achieving the best
precision of 67%.

TABLE III: Gaussian Blur Mean Average Precision

Excl. distE distL distA

None 13.07 6.01 7.33
xy 10.46 (-2.62) 5.96 (-0.05) 6.92 (-0.41)
rgb 13.07 (-0.00) 5.85 (-0.15) 6.05 (-1.28)
∂ 13.07 (0.00) 6.09 (+0.08) 7.75 (+0.42)
∂2 13.07 (0.00) 7.13 (+1.12) 9.99 (+2.66)
edge 37.96 (+24.89) 6.05 (+0.04) 7.59 (+0.25)
lab 7.28 (-5.79) 5.78 (-0.23) 6.06 (-1.28)
Incl. distE distL distA

xy, rgb 67.23 (+54.16) 10.04 (+4.03) 16.51 (+9.17)
xy, lab 37.97 (+24.89) 12.70 (+6.69) 16.02 (+8.68)
xy, rgb, lab 37.96 (+24.89) 8.00 (+1.99) 12.63 (+5.30)

C. Noise

The within results (Figure 9) show a fairly steady increase
in distance as the level of noise increases. However distE and
distA grow somewhat slower for small noise values compared
to distL.

The among tests (Table IV) show that distE performs best
overall, especially when the xy features are included. The
highest precision is achieved with the xy and rgb combination.
For measure distA and distL precision can be improved by
excluding the colour features rgb or lab whilst keeping all
other features. Alternatively, including only xy and one of the
colour features also leads to similar precision improvements.
For distA the xy and ∂2 features also increase precision
substantially, and for distL the xy and ∂ features have the
opposite effect, decreasing the precision.

TABLE IV: Gaussian Noise Mean Average Precision

Excl. distE distL distA

None 30.19 19.22 13.09
xy 22.83 (-7.36) 17.69 (-1.53) 12.89 (-0.20)
rgb 30.19 (-0.00) 26.66 (+7.44) 30.42 (+17.33)
∂ 30.19 (0.00) 18.52 (-0.70) 13.03 (-0.06)
∂2 30.19 (0.00) 18.00 (-1.22) 12.97 (-0.12)
edge 43.90 (+13.71) 18.78 (-0.44) 13.04 (-0.05)
lab 21.89 (-8.30) 24.85 (+5.63) 30.12 (+17.03)
Incl. distE distL distA

xy, rgb 78.38 (+48.19) 24.04 (+4.82) 27.91 (+14.83)
xy, lab 43.90 (+13.71) 26.34 (+7.12) 28.49 (+15.40)
xy, rgb, lab 43.90 (+13.71) 17.12 (-2.10) 12.87 (-0.22)
xy, ∂ 48.48 (+18.29) 12.60 (-6.62) 12.99 (-0.10)
xy, ∂2 44.27 (+14.08) 12.83 (-6.40) 14.35 (+1.27)

D. Brightness

The within results (Figure 10) show that all distance
measure are affected more significantly when brightness is
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Fig. 7: Effect of rotation on distances (normalised). All features included. Averaged over entire dataset.

σ

0 20 40 60 80 100

N
o

rm
a

li
s
e

d
 D

is
ta

n
c
e

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

distE

distL

distA

Fig. 8: Effect of Gaussian blur on distances (normalised). All
features included. Averaged over entire dataset.

decreased rather than when it is increased. In the case of
distL the distances grow at similar rate regardless of whether
brightness is increased or decreased moderately, whereas for
distE and distA the distances grow at a higher rate when
brightness is decreased.

The among results (Table V) show that distE is the
most effective measure; however, this effectiveness is greatly
decreased with the exclusion of the xy features. The exclusion
of the edge features improves the effectiveness of distE. For
the distA measure in particular, excluding the colour features
rgb or lab results in better precision. Excluding everything
but one of the colour features and the xy features increase
performance to a similar extent. This result suggests a counter-
action between colour and edge features. The best performing
measure is distE with the features xy and lab included.
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Fig. 9: Effect of Gaussian noise on distances (normalised). All
features included. Averaged over entire dataset.

E. Saturation

The within results (Figure 11) show that for distance
measures distL and distA increasing the saturation has a lesser
effect on the distance than decreasing it, whereas the opposite
is true for the distE measure. In the case of diminishing the
saturation for distE, once it is desaturated past approximately
0.2 the distance remains relatively constant. For distL and
distA the behaviour that occurs when desaturating the image is
not standard across all images, with the distance continuously
increasing for some while for others the distance starts de-
creasing again past a particular threshold. This instability can
be attributed to rank deficiencies described in Section III-C
and the fact that the QR decomposition with column pivoting
is applied in order to remove linear dependencies.

The among results (Table VI) show that overall distE
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included. Averaged over entire dataset.

TABLE V: Brightness Mean Average Precision

Excl. distE distL distA

None 27.13 23.16 19.67
xy 19.28 (-7.85) 22.28 (-0.88) 19.18 (-0.49)
rgb 27.13 (-0.00) 24.97 (+1.82) 27.63 (+7.95)
∂ 27.13 (0.00) 22.84 (-0.32) 19.54 (-0.14)
∂2 27.13 (0.00) 22.57 (-0.59) 19.41 (-0.26)
edge 34.76 (+7.62) 22.99 (-0.17) 19.57 (-0.10)
lab 22.09 (-5.05) 22.79 (-0.37) 27.64 (+7.97)
rgb, lab 22.05 (-5.08) 18.86 (-4.30) 20.83 (+1.15)
Incl. distE distL distA

xy, rgb 34.02 (+6.88) 19.68 (-3.47) 26.04 (+6.37)
xy, lab 34.76 (+7.62) 24.34 (+1.18) 26.25 (+6.58)
xy, rgb, lab 34.76 (+7.62) 22.03 (-1.13) 19.19 (-0.49)
xy, ∂ 32.15 (+5.02) 18.52 (-4.64) 18.65 (-1.03)
xy, ∂2 34.40 (+7.27) 18.56 (-4.59) 19.16 (-0.51)

outperforms the other two measures, and that excluding the xy
features greatly decreases the precision. Specifically, measure
distE with the xy, ∂ and ∂2 achieves the best performance.
Excluding the colour features rgb or lab while maintaining the
other features increases the precision for measures distL and
distA. These results suggest the importance of position and
edge based features for saturation changes.

VI. DISCUSSION

As a whole the results paint a rather complex picture—
there is no distance measure which works best in all situations.
Moreover, the inclusion or exclusion of a single feature can
have a dramatic impact on the efficacy of a distance measure.
Hence the selection of a suitable collection of features for
a particular problem must be guided by extensive empirical
analysis.

A surprising outcome of the experiments was the excellent
retrieval performance observed for the distE measure for
Gaussian noise and blur transformations when the position
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Fig. 11: Effect of saturation on distances (normalised). All
features included. Averaged over entire dataset.

TABLE VI: Saturation Mean Average Precision

Excl. distE distL distA

None 47.07 14.67 14.56
xy 23.52 (-23.56) 14.41 (-0.26) 14.23 (-0.33)
rgb 47.07 (-0.00) 19.06 (+4.39) 21.21 (+6.65)
∂ 47.07 (0.00) 14.50 (-0.17) 14.49 (-0.07)
∂2 47.07 (0.00) 14.29 (-0.37) 14.18 (-0.38)
edge 37.75 (-9.32) 14.57 (-0.09) 14.72 (+0.16)
lab 40.23 (-6.85) 19.91 (+5.24) 23.26 (+8.70)
Incl. distE distL distA

xy, ∂ 70.49 (+23.42) 14.09 (-0.58) 16.04 (+1.48)
xy, ∂2 78.00 (+30.93) 16.27 (+1.60) 26.77 (+12.21)
xy, ∂, ∂2 81.39 (+34.32) 19.20 (+4.53) 29.33 (+14.77)
∂, edge 16.07 (-31.00) 14.68 (+0.01) 17.15 (+2.59)
∂2, edge 16.06 (-31.01) 17.70 (+3.04) 20.77 (+6.20)
∂, ∂2, edge 16.09 (-30.98) 20.16 (+5.49) 24.87 (+10.30)

feature (xy) was combined with a colour feature (rgb or
lab). This particular finding warrants further investigation,
since it suggests that the region covariance descriptor may
be useful for methods that perform image super-resolution,
deblurring, and denoising based on matching and retrieval of
image patches [30]. The region covariance descriptor could
also be beneficial for algorithms that perform image restoration
under the assumption that an image patch can be encoded as a
sparse linear combination of basis images. Such paradigms
typically involve a learning step wherein a suitable collec-
tion of basis images is constructed from numerous example
images. The assessment of similarity between image patches
is of essential importance in the learning process [31]. Our
experiments suggest that the region covariance descriptor can
be used to capture an appropriate notion of similarity even
under considerable noise or image blur.



VII. CONCLUSION

Our work has explored various aspects of the region
covariance descriptor. We discussed three different distance
measures that are frequently utilised and explained their signif-
icance. We also explored the efficacy of the distance measures
through extensive targeted experiments in which we investi-
gated numerous feature combinations. Our findings suggest
that no specific distance measure is best for all scenarios,
and that the choice of features can have a dramatic impact
on performance. In future work we intend to: (1) replicate the
classification results reported in [17] and [32], and (2) conduct
a thorough analysis of the datasets in those papers in order
to understand why certain distance measures work best in a
particular context. We also intend to investigate the potential
utility of the region covariance descriptor for various image
restoration tasks.
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