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INTRODUCTION 

A modern computer vision pipeline for generic image classification and recognition consists of three 
broad conceptual steps: 
• selecting suitable (region covariance descriptors ) 
• defining a measure of similarity between feature descriptor (distance between covariance matrices) 
• learning a classification rule that uses the feature descriptors and corresponding similarity measure to 

determine what the image represents 

MOTIVATION 
• Region covariance descriptor has proven to be useful in numerous computer vision applications. 
• The properties of the descriptor are not well understood or documented. 
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FEATURE MAPPINGS 
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REGION COVARIANCE DESCRIPTOR EXAMPLE 
 

How do features and distance measures influence the similarity between 
two images? 
 

DATASET 

• Diverse images of human faces 500 × 500 pixels 
• Processing by centering all images on the nose and cropping to 319 × 319 pixels  
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TRANSFORMATIONS 
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RESULTS 

Features: 

DISCUSSION 

• No distance measure works best in all situations. 
• Inclusion or exclusion of a single feature can have a dramatic impact.  
• Selection of features must be guided by extensive empirical analysis. 
• Excellent retrieval performance observed for the 𝑑𝑖𝑠𝑡𝐸  measure for Gaussian noise and blur 

transformations when the position feature (𝑥𝑦) was combined with a colour feature (𝑟𝑔𝑏 or 𝑙𝑎𝑏). 
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