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Introduction

▪ Pedestrian detection and tracking widely researched

▪ Surveillance, vehicle navigation, human/computer interaction

▪ But what about sports?

▪ Provide a foundation for automated game statistics, including player 

movements, interactions and events

▪ Sports player detection and tracking researched only in a few cases

▪ Mostly soccer and basketball

▪ In Australia, the most popular sport is Australian Rules Football (AFL)

▪ AFL funded the work

▪ Vision detection and tracking methods yet to be applied and studied
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Mild Pose Variation Extreme Pose Variation Low Resolution Exposure Problems

Occlusion Difficulties

Challenges

▪ Large field size leads to low resolution of players on far side of field (~ 40pixels in height)

▪ Adelaide Oval (167m x 124m) 2x size of Hindmarsh soccer stadium (120m x 80m)

▪ Outdoor play leads to great exposure variations across different field positions

▪ Large number of people 18 per team, 9 umpires, ~20 other officials

▪ Extreme pose and appearance variation

▪ Regular occlusion of multiple players

▪ Fast speed and direction changes of players



Top View of Oval showing Camera Overlap Camera Setup

▪ Broadcast footage not suitable:

▪ Lack of control, constant cuts, camera movements, etc.

▪ Captured our own from top of grandstand:

▪ Single vantage point - easy setup and monitoring, however not ideal for optimal resolution possibilities

▪ Panorama style - cameras pointed at different areas of field

▪ Height provides some relief from occlusion (see over players)

Footage Capturing



Detector Team Classifier Tracker

GOAL: Find on-field players and officials

▪ Sliding Window

▪ Aggregated Channel Features inc.

HOG

▪ Boosted Classifier

GOAL: Assign detections a class based 

on team or official

▪ HSV Colour Features

▪ Weighted Histograms

▪ SVM Classifiers

GOAL: Join classified detections across 

time

▪ Position + Velocity Based Kalman

Filter

▪ Energy Minimisation

▪ Combination

The Pipeline: Overview



Goal: Find the position and size of on field players and officials, marking them with a bounding box 

▪ It’s important that the detection module be as accurate as possible

▪ It is relied on by the following team classification and tracking modules

The Pipeline: Player Detection Module

Original Detections



Representative Overview of the Player Detection Module

Negative Training Data Positive Training Data Classifier

Joining of Weak Classifiers Forms Strong Classifier
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▪ Rescaling sliding window over entire frames

▪ Aggregated Channel Features (Dollár et al. 2009/2010):

▪ Histograms of Oriented Gradients (HOG), Normalised Gradient Magnitudes, and LUV colour channels

▪ Boosted classifier of 2048 depth-two decision trees as weak classifiers (Dollár et al. 2014)

▪ Non-Maximal Suppression for combining multiple positive detections

The Pipeline: Player Detection Module

Feature Extraction

Raw L U V NGM

Histograms of Oriented Gradients

Feature Vector



▪ 13001 (1046 occluded) training samples; 5620 (423 occluded) testing samples

▪ 1:2 ratio bounding boxes

▪ Marked into team, marked with flag for occlusion

▪ Extreme poses not bounded to 1:2 bounding boxes

▪ Negatives sampled randomly from non-positive areas (30% positive overlap permitted)

Footage Annotation



Comparison of Models Trained on Particular Data

▪ INRIA* vs CALTECH** vs AFL trained models

▪ Highlights need for particular AFL detector, trained with 

relevant data:

▪ Pedestrians found in distinctly different environments

▪ Pedestrians much more limited pose

▪ Pedestrians captured from side-on / ground level

Player Detection Module Experiments

AFL Trained Model on some Test Images from INRIA

Precision-Recall Curve of Models Trained on Different Datasets

* INRIA: http://pascal.inrialpes.fr/data/human/

** CALTECH: http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/



Test Results of AFL Models Trained with and without Occlusion

Comparison of Models Trained on Particular Data

▪ Inclusion of occlusion samples results in detection 

of many more false positives

▪ Especially in crowded, heavily occluded areas

▪ Model has lessened ability to distinguish 

individual players

Player Detection Module Experiments

Precision-Recall Curve of Models Trained on Different Datasets



Teams Captured Uniforms. They Look Different from Different Perspectives and in Different Conditions.
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ID: 1

Runners 
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Goal: Assign each detection a class - team A, team B, umpire, runner, or other

▪ Each class wears its own uniform consisting of different colours and patterns

▪ However variation in pose, lighting conditions and resolution cause the same uniform to appear very different

The Pipeline: Team Classification Module



Representative Overview of the Team Classification Module

High-Dimensional SVM (Quad Kernel)Spatial WeightRaw Detection Histogram of Weighted Values

▪ Histograms of HSV pixel intensities (64 bins for each channel)

▪ HSV used over RGB as found better discriminative power 84.31% vs 90.37% MAP

▪ Support Vector Machine Classifiers with Quadratic Kernel

▪ Players Guernsey only covers 5 – 15% of detection box

▪ Apply static spatial weighted mask (2D Gaussian) –

increased MAP from 73.49% (no mask) to 90.37%

The Pipeline: Team Classification Module



Comparison of Teams and Environmental Conditions

▪ Some teams are classified better than others

▪ Main factor is lighting conditions with the night and overcast matches having best results 

▪ Trained per team models with data from multiple matches, and per match models with data from only a particular match

▪ Per Team MAP 85.98%, Per Team Per Match MAP 90.37%

The Pipeline: Team Classification Module

Precision-Recall Curve of Models Trained on Different Teams (Numbers/Colours) in Different Lighting Conditions (Line Style)



The Difficulties with Relying on Detections for Tracking

Detections

Slight position error No detection 2 Detections, 1 Target Scale + position errorGood detection Position error

Track

Goal: Join detections of the same players across time building tracks

▪ Tracking by Detection approach

▪ Can be difficult as detections aren’t perfect:

▪ Position or scale errors, false positives or false negatives

The Pipeline: Player Tracking Module



Detection assigned to track after looking back a few frames

▪ Local Kalman Filter, based on velocity and position of players

▪ Assigns detections greedily based on Euclidean distance within 20 

pixel radius of predicted position of each track

▪ If unassigned, checks past frames (up to 5), if still unassigned 

initialises a new track

▪ Tracks lasting less than 20 frames are removed, assumed false 

positives

The Pipeline: Player Tracking Module

Frame 𝑡 − 2Frame 𝑡 Frame 𝑡 − 5Frame 𝑡

Detection not assigned within 5 frames, new track initialised

New Track

at 𝑡



Representative Overview of the Player Tracking Module

▪ Global Discrete Continuous Energy Minimisation approach (Milan et al. 2014)

▪ How would this global method compare to the local method?

▪ Combined, Energy Minimisation refines an initial Kalman Filter solution

The Pipeline: Player Tracking Module



Player Tracking Module Experiments

Kalman Filter

Energy 

Minimisation

Combination



▪ Time per single frame (seconds) assuming ~20 detections per frame
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Real-time (24fps) Runtime analysis performed on 64-bit desktop with Windows 7 - Intel i7-4790U @ 3.6GHz and 16GB RAM

Runtime Analysis



▪ Pedestrian detection approaches inadequate

▪ Vital to train AFL player detector, with AFL training data

▪ HSV Colour channels are sufficiently discriminative with weighted histograms

▪ The SVM classifiers can separate teams with 90% MAP

▪ However highly susceptible to lighting conditions, may need classifiers for particular lighting conditions

▪ The Kalman Filter tracker creates relatively accurate short tracks and is much faster than the Energy Minimisation

approach

▪ Longer tracks can be captured with the use of the global Energy Minimisation approach, however requires Kalman

Filter tracks as initializer to be feasible in both accuracy and runtime

▪ Improve runtimes, investigate other detection methods, different condition invariant features for team classification and 

more state-of-the-art tracking methods

Conclusions and Further Work


