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The dataset is based on broadcast tennis footage, and is annotated for fine-grained action centric_event
recognition, temporal localisation and description. The annotations are more detailed, accurate, and structured, Results
compared to other video understanding sets. Framewise Classification and Event Detection
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Descriptions
- Points have a caption attribute which contains a single sentence which describes the point Sentence Generation
- Descriptions are similarly parsed to remove individual names and forehand/backhand mentions converted to - Word matching metrics not a reliable indication of true performance, more for this set to object-centric sets,
far player (fp), near player (np), right shot (rs), and left shot (ls) as individual words or small phrases have a great conceptual difference
- Empirically, sentences mostly correct however our model can suffer from repeated or misplaced words as
Usage well as the occasional concept error
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