
Hayden Faulkner
GECCO 2015

2

OUTLINE

 Address the multifaceted Traveling Thief Problem (TTP)

 Introduce a new fast basic heuristic method for
achieving a good packing of items provided a tour

 Introduce two additional operators, one of which alters
a packed tour based on packing

 Compare varying combinations and setups of the
heuristic and operators

3

THE TRAVELING THIEF PROBLEM (TTP)

 𝑛 cities, with distances 𝑑(𝑖, 𝑗) between cities 𝑖 and 𝑗

 𝑚 items, each with weight 𝑤𝑖𝑘 and profit 𝑝𝑖𝑘

 Knapsack capacity 𝑊

 Renting rate 𝑅

 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 representing the minimal and maximal
speed of the traveller

4

THE TRAVELING THIEF PROBLEM (TTP)

 Goal: Visit each city exactly once, maximising the total profit 𝑃
such that the total weight does not exceed the knapsack capacity
𝑊, where 𝑃 is defined as:

𝑃 =

𝑖=1

𝑚

𝑝𝑖 𝑥𝑖 − 𝑅

𝑖=1

𝑛

𝑡𝑖,𝑖+1

where 𝑥𝑖 = 1 0 depending on whether the item 𝑖 is picked 1 or
not 0 , and 𝑡𝑖,𝑗 is defined as:

𝑡𝑖,𝑗 =
𝑑(Π𝑖 , Π𝑗)

𝑣𝑚𝑎𝑥 −𝑊Π𝑖
𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
𝑊

where Π𝑖 is the city at tour position 𝑖 in tour the Π, and 𝑊Π𝑖 is the

current weight of the knapsack at city Π𝑖.

5

THE TRAVELING THIEF PROBLEM (TTP)

 Composed of the merging of the Traveling Salesman
Problem and the Knapsack Problem

1

3

4

2

5

8

7

6

1

2

5

17
0

8
10

11

13

14

15
7 9 3

4

6

12Knapsack

16

6

THE TRAVELING THIEF PROBLEM (TTP)

 Composed of the merging of the Traveling Salesman
Problem and the Knapsack Problem

1

3

4

2

5

8

7

6

2

5

17

6

0

8
10

11

12

13

14

15
7 9 3

4

1

2

5

14

7

Knapsack

1
16

7

FAST PACKING ROUTINE USING BASIC HEURISTIC

 Finds a TSP solution using Chained-Lin-Kernighan [1]

 Using the fixed TSP solution, generates a solution for
KP problem

 Ignores the interdependency between the individual
TSP and KP problems

8

FAST PACKING ROUTINE USING BASIC HEURISTIC

9

FAST PACKING ROUTINE USING BASIC HEURISTIC

 Calculate heuristic score 𝑠𝑖𝑘 for each item

10

FAST PACKING ROUTINE USING BASIC HEURISTIC

 Calculate heuristic score 𝑠𝑖𝑘 for each item

 Sorts items in non-decreasing order based on score 𝑠𝑖𝑘

11

FAST PACKING ROUTINE USING BASIC HEURISTIC

 Calculate heuristic score 𝑠𝑖𝑘 for each item

 Sorts items in non-decreasing order based on score 𝑠𝑖𝑘

 Greedily adds items to the packing plan until objective
value no longer increases

12

FAST PACKING ROUTINE USING BASIC HEURISTIC

 Calculate heuristic score 𝑠𝑖𝑘 for each item

 Sorts items in non-decreasing order based on score 𝑠𝑖𝑘

 Greedily adds items to the packing plan until objective
value no longer increases

13

FAST PACKING ROUTINE USING BASIC HEURISTIC

14

FAST PACKING ROUTINE USING BASIC HEURISTIC
𝑣 = 𝑚 𝜏

15

FAST PACKING ROUTINE USING BASIC HEURISTIC

16

FAST PACKING ROUTINE USING BASIC HEURISTIC

17

FAST PACKING ROUTINE USING BASIC HEURISTIC

18

FAST PACKING ROUTINE USING BASIC HEURISTIC

19

FAST PACKING ROUTINE USING BASIC HEURISTIC

20

FAST PACKING ROUTINE USING BASIC HEURISTIC

21

FAST PACKING ROUTINE USING BASIC HEURISTIC

22

FAST PACKING ROUTINE USING BASIC HEURISTIC

23

FAST PACKING ROUTINE USING BASIC HEURISTIC

24

FAST PACKING ROUTINE USING BASIC HEURISTIC

25

FAST PACKING ROUTINE USING BASIC HEURISTIC

26

FAST PACKING ROUTINE USING BASIC HEURISTIC

27

FAST BASIC HEURISTIC

 Once a fixed tour calculated, a score 𝑠𝑖𝑘 is calculated for each
item 𝑘 in city 𝑖:

𝑠𝑖𝑘 =
𝑝𝑖𝑘
𝑤𝑖𝑘

where 𝑝𝑖𝑘 and 𝑤𝑖𝑘 is the profit and weight of item 𝑘 respectively.

28

FAST BASIC HEURISTIC

 Once a fixed tour calculated, a score 𝑠𝑖𝑘 is calculated for each
item 𝑘 in city 𝑖:

𝑠𝑖𝑘 =
𝑝𝑖𝑘
𝑤𝑖𝑘 × 𝑑𝑖

where 𝑝𝑖𝑘 and 𝑤𝑖𝑘 is the profit and weight of item 𝑘 respectively,
and 𝑑𝑖 is the distance from city 𝑖 to the end of the tour.

29

FAST BASIC HEURISTIC

 Once a fixed tour calculated, a score 𝑠𝑖𝑘 is calculated for each
item 𝑘 in city 𝑖:

𝑠𝑖𝑘 =
𝑝𝑖𝑘
𝑥

𝑤𝑖𝑘
𝑦
× 𝑑𝑖
𝑧

where 𝑝𝑖𝑘 and 𝑤𝑖𝑘 is the profit and weight of item 𝑘 respectively,
and 𝑑𝑖 is the distance from city 𝑖 to the end of the tour.

30

FAST BASIC HEURISTIC
𝑥
𝑦
𝑧

𝑥
𝑦
𝑧

31

FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480 INSTANCE: pcb3038_n9111

𝑥
𝑦
𝑧

𝑥
𝑦
𝑧

*objective scores averaged over 50 unique tours

32

FAST BASIC HEURISTIC

 Once a fixed tour calculated, a score 𝑠𝑖𝑘 is calculated for each
item 𝑘 in city 𝑖:

𝑠𝑖𝑘 =
𝑝𝑖𝑘
𝛼

𝑤𝑖𝑘
𝛼 × 𝑑𝑖

where 𝑝𝑖𝑘 and 𝑤𝑖𝑘 is the profit and weight of item 𝑘 respectively,
and 𝑑𝑖 is the distance from city 𝑖 to the end of the tour.

33

FAST BASIC HEURISTIC

HOW TO FIND α?

34

FAST BASIC HEURISTIC
𝛼 𝛼

35

FAST BASIC HEURISTIC
𝛼 𝛼

*objective scores averaged over 50 unique tours

INSTANCE: rl11849_n118480 INSTANCE: pcb3038_n9111

36

FAST BASIC HEURISTIC
𝛼

*objective scores averaged over 50 unique tours

INSTANCE: rl11849_n118480

37

FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝑍𝑙

𝑍𝑚

𝑍𝑟

38

FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝑍𝑙

𝑍𝑚
𝑍𝑟

39

FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝑍𝑚

𝑍𝑟

𝑍𝑙

40

FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝑍𝑚𝑍𝑙 𝑍𝑟

41

FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝑍𝑚 𝑍𝑟
𝑍𝑙

42

FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝑍𝑟
𝑍𝑚

𝑍𝑙

43

FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝑍𝑟

𝑍𝑚

𝑍𝑙

44

FAST BASIC HEURISTIC

INSTANCE: rl11849_n118480_uncorr_02

 Sample different 𝛼 values and compare the objective scores

 Narrow in on the best 𝛼 value quickly

𝛼 = 2.4725

45

ADDITIONAL OPERATORS

 The fast basic packing approach is not guaranteed to find globally
optimal TTP solution:

1. Doesn’t modify tours based on items

2. The packing plan it finds may not be optimal for a given tour

 Introduce two local search operations to slightly improve on a
given tour and packing plan:

1. BitFlip – Only modifies packing plan

2. Insertion – Modifies tour based on provided packing plan

46

BITFLIP

 Iteratively evaluates the outcome of flipping each bit position
corresponding to each item 𝐼𝑚 ∈ 𝑀 in the packing plan 𝑃

 If flipping the bit improves the objective value then the change is
kept, otherwise the packing plan is restored

 Can be time consuming on instances with a large number of items
as every item is checked

 Can be run consecutively a number of times to increase
improvements

47

INSERTION

 Takes advantage of situation where valuable item is picked up at a
particular city early in the tour and is worth visiting the city later
in the tour

1

3

4

2

5

8

7

6

2

5

17

6

0

8
10

11

12

13

14

15
7 9 3

4

1

2

5

14

7

Knapsack

1
16

48

INSERTION

 Takes advantage of situation where valuable item is picked up at a
particular city early in the tour and is worth visiting the city later
in the tour

1

3

4

2

5

8

7

6

2

5

17

6

0

8
10

11

12

13

14

15
7 9 3

4

1

2

5

14

7

Knapsack

1
16

49

INSERTION

 Searches over cities in reverse tour order evaluating the effect of
inserting each city at all positions before its own in the tour

 If one or more positions are found, the one that achieves the
highest objective score is chosen

 Typical good TTP solutions, and solutions constructed by the fast
basic heuristic, have many items picked up towards the end of the
tours, hence the time consuming Insertion operator begins at the
end of the tour

 Experiments show Insertion makes rare and minor improvements
to a TTP solution provided by the fast basic heuristic

50

ALGORITHM COMBINATIONS

S1: CLK > Fast Packing

S2: CLK > Fast Packing > BitFlip until convergence or time expired

S3: CLK > Fast Packing > (1+1)-EA until convergence or time expired

S4: CLK > Fast Packing > Insertion until convergence or time expired

S5: repeat S1 until time expired

[1] (1+1)-EA is similar to BitFlip however instead of changing every
bit which improves the objective score, each bit is changed with a

probability
1

𝑚 CLK: Chained Lin-Kernighan

51

ALGORITHM COMBINATIONS

C1: CLK > Fast Packing > repeat one BitFlip then one Insertion until
convergence or time expired

C2: CLK > Fast Packing > repeat one BitFlip then one (1+1)-EA then
one Insertion until convergence or time expired

C3: Repeat CLK then Fast Packing until 10% of time expired pick best
> one BitFlip then one Insertion until time expired

C4: Repeat CLK then Fast Packing until 10% of time expired pick best
> one BitFlip then one (1+1)-EA then one Insertion until time
expired

C5: repeat C1 until time expired

C6: repeat C2 until time expired
CLK: Chained Lin-Kernighan

52

MIP APPROACH

MIP (Mixed Integer Programming) approach of Polyakovskiy,
Neumann (2014):

 Given tour able to solve optimal packing plan exactly or
approximately

 Very costly in regard to runtimes as it uses a linearization
technique to handle non-linear terms in the objective
function

53

EXPERIMENTS

 Compare our algorithm combinations S1-S5 and C1-C6 with the
MIP and the MATLS (Memetic Algorithm with the Two-stage
Local Search) approach of Mei, Li, Yao (2014)

 Use comprehensive set of benchmark instances from [1,4]:

• 51 – 85900 cities

• three types: uncorrelated, uncorrelated with similar weights,
and bounded strongly correlated

• 1,3,5, or 10 items per city for each TSP and KP combination

• For each TTP configuration there is 10 different instances
with varying knapsack capacities

54

EXPERIMENTS

 From the 9720 benchmark instances 72 representative cases
were selected:

• six different number of cities: 195, 783, 3038, 11849,
33810, 85900

• all types: uncorrelated, uncorrelated with similar weights,
and bounded strongly correlated

• Two different items per city: 3 and 10

• Two different knapsack capacities: 3 and 7 times the size of
the smallest knapsack

 All algorithms run for 10 minutes per instance, except MIP which
ran for 8 hours on instances where 𝑛 ∈ {33810, 85900}

 30 independent repetitions of algorithms on each instance

55

RESULTS

 𝛼 is relatively equal for
similar types of instances
no matter instance size

 Bounded-strongly have
highest and most
variable 𝛼

 As knapsack capacity 𝑊
increases, 𝛼 decreases

56

RESULTS

Comparison of the number of first, second, and third placings of S algorithms across the 72 instances

 S5 clearly outperforms the others, showing the importance of a
good initial tour

 S2-S4 relatively equal runners up showing they perform on
instances where the others do not

 The placings of S4 highlight the necessity to consider
modifications to the tour of a TTP solution

57

RESULTS

Comparison of the number of first, second, and third placings of C algorithms across the 72 instances

 Recall that C3 and C4 sample several starting tour options, compared to
C1 and C2, and that C5 and C6 are the restart variants of C1 and C2

 The dominance C3 and C4 again suggest the importance of finding a
good initial TSP tour solution

 C5 and C6 perform better than the single iteration C1 and C2 methods,
however they do not perform as well as C3 and C4 which have more
time to sample a greater number of initial tours

58

RESULTS

Comparison of the number of first, second, and third placings of all algorithms across the 72 instances

EA: Evolutionary Algorithm, RLS: Random Local Search, SH: Simple Heuristic. All from [1].

 S5, MIP, and MATLS are the best performing algorithms overall

59

RESULTS

Objective value ratios compared to maximum found across all algorithms and iterations

60

CONCLUSIONS

 The strength of our fast basic packing heuristic is its
speed, allowing more initial Lin-Kernighan tours to be
sampled (15-60 milliseconds for 195 cities, and 18-
110 seconds for 85,900 cities)

 Local search operators such as BitFlip and Insertion
have positive yet limited effect due to their
computational complexity

 Even MIP approach only just achieves comparable
performance with the limited time availability

61

REFERENCES

1. S. Polyakovskiy, M. R. Bonyadi, M. Wagner, Z. Michalewicz, and F. Neumann. A
comprehensive benchmark set and heuristics for the traveling thief problem. In
Genetic and Evolutionary Computation Conference (GECCO), pp. 477{484. ACM,
2014

2. S. Polyakovskiy and F. Neumann. Packing while traveling: Mixed integer
programming for a class of nonlinear knapsack problems. CoRR, abs/1411.5768,
2014

3. Y. Mei, X. Li, and X. Yao. Improving efficiency of heuristics for the large scale
traveling thief problem. In Simulated Evolution and Learning (SEAL), Vol. 8886 of
LNCS, pp. 631{643. Springer, 2014

4. TTP Test Data. See http://cs.adelaide.edu.au/~optlog/research/ttp.php

